Export the quantitative data from an tidyproteomics data-object
export_quant.Rd
export_quant()
returns the main quantitative data object as a tibble with
identifier as the designation for the measured observation.
Usage
export_quant(
data = NULL,
file_name = NULL,
raw_data = TRUE,
normalized = FALSE,
scaled = c("none", "between", "proportion")
)
Arguments
- data
tidyproteomics data object
- file_name
character string vector
- raw_data
a boolean
- normalized
a boolean
- scaled
a boolean
Examples
library(dplyr, warn.conflicts = FALSE)
library(tidyproteomics)
hela_proteins %>%
normalize(.method = "loess") %>%
export_quant(file_name = "hela_quant_data.xlsx", normalized = "loess")
#> ℹ Normalizing quantitative data
#> ℹ ... using loess regression
#> ✔ ... using loess regression [1.2s]
#>
#> ℹ Selecting best normalization method
#> ✔ Selecting best normalization method ... done
#>
#> ℹ ... selected loess