Skip to contents

Import / Export

Data can imported from flat tables or file directories, and exported again into flat tables. See vignette("importing") for more details and examples.

import()
Main function for importing data
export_quant()
Export the quantitative data from an tidyproteomics data-object
export_analysis()
Export the quantitative data from an tidyproteomics data-object
export_compexp()
Comparative analysis between two expression tests
export_config()
Helper function to export the config file to current project directory
as.data.frame(<tidyproteomics>)
Helper function to convert the data-object into a tibble
load_local()
Load project specific data
save_local()
Store data locally
save_table()
Write table data locally

Helper functions

These functions can save data and tables out to the project folder, add annotations to the data and tables, modify the experimental names, and list out the sequence of data transformations.

merge()
Merge multiple tidyproteomics data-objects
collapse()
Convert peptide quantitative data into protein quantitative data
operations()
Returns the data transformations
reassign()
reassign the sample info
annotate()
Main function for adding annotations to a tidyproteomics data-object
show_annotations()
Display the current annotation data
path_to_package_data()
Helper function for displaying path to data

Subsetting

Subsetting filters an tidyproteomics data-object by a given regular expression to create a subset. See vignette("subsetting") for more details and examples.

subset(<tidyproteomics>)
Create a data subset
intersection()
Create a data subset

Summarizing

Summarizing computes quick summary statistics on a given tidyproteomics data-object. See vignette("summary") for more details and examples.

print(<tidyproteomics>)
Tidy-Quant data object print definition
plot(<tidyproteomics>)
Tidy-Quant data object plot definition
summary(<tidyproteomics>)
Summarize the data
plot_counts()
Plot the accounting of proteins. peptides, and other counts
plot_quantrank()
Plot the variation in normalized values

Normalizing

Normalizing adjusts the quantitiative values between samples to remove collection biases, based on a number of methods. See vignette("normalizing") for more details and examples.

normalize()
Main function for normalizing quantitative data in a tidyproteomics data-object
select_normalization()
Select a normalization method

Imputing

Imputing calculates values for missing observations, based on a number of methods. See vignette("imputing") for more details and examples.

impute()
Main method for imputing missing values
impute.randomforest()
Imputes missing values based on the missForest function

Visualization

Visualizing data is important for understanding the underlying quality of the data as well as generating graphical representations for documenting work. See vignette("visualization") for more details and examples.

plot_normalization()
Plot normalized values
plot_variation_cv()
Plot the variation in normalized values
plot_variation_pca()
Plot the PCA variation in normalized values
plot_dynamic_range()
Plot CVs by abundance
plot_venn()
GGplot2 extension to plot a Venn diagram
plot_euler()
GGplot2 extension to plot a Euler diagram
plot_pca()
Plot PCA values
plot_heatmap()
Plot a heatmap of quantitative values by sample

Two-sample Analysis

Two-sample Analysis is a process by which two samples are statistically compared to identify potential observational outliers worth explroing further. See vignette("expression") and vignette("enrichment") for more details and examples.

expression()
Summarize the data
plot_volcano()
Volcano plot of expression values
plot_proportion()
Plot proportional expression values
plot_compexp()
Comparative analysis between two expression tests
enrichment()
Compute protein enrichment
plot_enrichment()
Bubble plot of enrichment values

Automation

**Automating the expression and enrichment analyses. See vignette("expression") and vignette("enrichment") for more details and examples.

analyze_expressions()
Analysis tables and plots of expression values
analyze_enrichments()
Analysis tables and plots of expression values

Protein Sequencing

Protein Sequencing allows for the visulaization of peptide sequences and modifications mapped back onto the full protein sequence. See vignette("sequencing") for more details and examples.

plot_protein()
Visualize mapped sequence data
protein_map()
Align a peptide data to protein sequences for visualization